
Todays schedule

● Asynchronous processing & tool-chain approach
● Integrity, privilege separation and capabilities.
● CarvFS & MinorFS
● MattockFS core design
● MattockFS as distributed-framework building block
● Installation (hands on)
● File-system as API (hands on)
● Python API (hands on)

MattockFS

Computer-Forensics File-System

MattockFS as distributed-framework
building block.

High level view

● MattockFS as building block
● Module framework

– Possibly purely a library

● Load-balancing mesh-up
● Remote kick-start
● Storage mesh-up

Base facility for storage mesh-up

● /var/mattock/mnt/$MPNO
– Put mnt/0 on local storage

– Put mnt/1 .. mnt/n on NFS shares MattockFS nodes

Considerations for kickstarting

● Networking client for kickstarting to MattockFS
node.

● “Most” of the data from a kick-started image
should remain on initially chones MattockFS
node! (locality of data concerns).

● If throttling on the client(s) isn’t an option,
consider providing a proxied kick-start.

Load-balancing mesh-up

● MattockFS has hooks for ‘stealing’ most CPU
intensive jobs from actors for load balancing
purposes.

● In case of unbalance CPU usage, load-balancer
ends tool-chain on node0.

● Router state of prematurely completed tool-chain.
● New tool-chain initiated on nodeX using old router

state.

Module framework library

● Built on top of low level MattockFS language
binding and CarvPath library

● Need a module framework for each language
that needs to be supported!

Module framework library

● Magic library
● Meta serialization
● Distributed router

logic.
● Evidence module

API
● Storage logic with

throttling support.

Router
logic

storage
logic meta

serialization

evidence
tree
logic

Worker-core worker

magic

Module-framework process

MattockFS tool

Magic library

● In OCFA most tool-chains included file module
● Many tool-chains completed after file-type

check.
● Integrating libmagic in each module reduces

unneeded IPC.
● Requirement: module framework library MUST

include libmagic functionality.

Meta Serialization

● OCFA used XML and relied heavily on XSLT
– Serious concerns high-volume processing

performance.

● Suggestion: Serialization technology should be
chosen carefully.

Distributed router logic

● OCFA used a central XML router
– This doubled messaging

● Original OCFA router was stateless.
– Modeled after IPTABLES

● The FIVES project introduced router-state (line number) to
tool-chain.

● MattockFS API includes limited space for tool-chain level
router state.

● Requirement: module framework library MUST provide
distributed routing functionality.

● Suggestion : module framework library should explore a rich
yet minimally statefull routing logic language.

Module API

● OCFA started off with a simple single-callback
API (processEvidence).

● Later versions of OCFA also included a tree-
graph API.

● The tree-graph API turned out to be much more
powerful w.r.t. deep meta-data.

● Suggestion: new API should preferably use a
tree-graph API.

Throttling

● MattockFS provides hooks for throttling related
info.

● The OS provides additional information needed
for throttling purposes.

● Requirement: The module framework library
MUST implement throttling.

Module framework library

● Magic library
● Meta serialization
● Distributed router

logic.
● Evidence module

API
● Storage logic with

throttling support.

Router
logic

storage
logic meta

serialization

evidence
tree
logic

Worker-core worker

magic

Module-framework process

MattockFS tool

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

