Todays schedule

 Asynchronous processing & tool-chain approach

MattockFS

Computer-Forensics File-System

Asynchronous processing &
the tool-chain approach.

Asynchronous processing and the
tool-chain approach

Message
(Call)

Base Concurrency Models

Shared state Message passing
concurrency concurrency
Common address Private address

space (R+W) space
_ocks & semaphores. « Queues

Potential robustness « Potential latency and
ISSues. gueue size Issues.

Actor model of computation

» Actors as universal fundamental primitives
of concurrent digital computation.

* Event driven
 Communication by messages
» Fault tolerant by supervision

Message passing concurrency

e Actors
e \Workers

 Producers/Consumers

,; Consumer .1|
Y
R
f.

it
i_ i.

The Open Computer Forensics Architecture
ik (2001/2006-2012)

tool 2

rule list

Tool 4

* Distributed
* Asynchronous

 Message passing
concurrency

Use existing tools/libs
e Fault isolation
« Recoverable failure

 Hundreds of disk images

The Open Computer Forensics Architecture
(2001/2006-2012)

C.
\) . 6
{
O I
(Y {
(4

The OCFA Anycast @g\

Message bus solution

Based on the workers concept
Part of Open Computer forensics Architecture
Persistent Priority Queues

Virtually infinite size queues

Queues and workers

4 N

Module A
(Producer Role)

Example forensic tool-chain

T 3

Issues with AnyCast

* Infinite size queues
* Multiple tools In tool-chain access same data
* Result: Many page-cache misses

Unthrottled asynchonous processing

PDF and CDF of log,, of cache demand

T |

B 7 3 é 1'0 1'1 1'2 1'3 14
]ﬂglu(c}

Spurious reads in OCFA

Page-cache misses

Early hashing and Content Addressed Storage
No locality of data design

Server-side data entry

The Open Computer Forensics Architecture
(2001/2006-2012)

 Distributed

* Asynchronous

* Message passing
concurrency

» Use existing tools/libs
e Fault isolation
« Recoverable failure

 Hundreds of disk images

The Open Computer Forensics Architecture
(2001/2006-2012)

* Distributed * Poor page-cache usage
+ Asynchronous — spurious reads
. Message passing * CAS - spurious reads
concurrency » Spurious hashing -
» Use existing tools/libs spurious reads.
 Fault isolation * No locality of data
design — spurious

e Recoverable failure
reads.

 Hundreds of disk images

Challenges for message-passing
concurrency based forensic processing
« Efficient use of available page-cache.

 Locality of data.

e Storage system & knowledge of active tool-chains.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

