
Todays schedule

● Asynchronous processing & tool-chain approach
● Integrity, privilege separation and capabilities.
● CarvFS & MinorFS
● MattockFS core design
● MattockFS as distributed-framework building block
● Installation (hands on)
● File-system as API (hands on)
● Python API (hands on)

MattockFS

Computer-Forensics File-System

Asynchronous processing &
the tool-chain approach.

Asynchronous processing and the
tool-chain approach

Base Concurrency Models

● Shared state
concurrency

● Common address
space (R+W)

● Locks & semaphores.
● Potential robustness

issues.

● Message passing
concurrency

● Private address
space

● Queues
● Potential latency and

queue size issues.

Actor model of computation

● Actors as universal fundamental primitives
of concurrent digital computation.

● Event driven
● Communication by messages
● Fault tolerant by supervision

Message passing concurrency

● Actors
● Workers
● Producers/Consumers

The Open Computer Forensics Architecture
(2001/2006-2012)kick

Data store module

Router

tool 1

tool 2

tool 3

Tool 4

kickstart

com
m

it

derive
rule list

● Distributed
● Asynchronous
● Message passing

concurrency
● Use existing tools/libs
● Fault isolation
● Recoverable failure
● Hundreds of disk images

The Open Computer Forensics Architecture
(2001/2006-2012)

persistent queues

anycast
relay

Router

kick

Tool1

Router

Tool1

Tool1

Tool2
Tool2

anycast

unicast an
yc

as
t

dsm

storage & evidence meta subsystems

The OCFA Anycast

 Message bus solution
 Based on the workers concept
 Part of Open Computer forensics Architecture
 Persistent Priority Queues
 Virtually infinite size queues

Queues and workers

Example forensic tool-chain

Issues with AnyCast

 Infinite size queues
 Multiple tools in tool-chain access same data
 Result: Many page-cache misses

Unthrottled asynchonous processing

Spurious reads in OCFA

 Page-cache misses
 Early hashing and Content Addressed Storage
 No locality of data design
 Server-side data entry

The Open Computer Forensics Architecture
(2001/2006-2012)

● Distributed
● Asynchronous
● Message passing

concurrency
● Use existing tools/libs
● Fault isolation
● Recoverable failure
● Hundreds of disk images

The Open Computer Forensics Architecture
(2001/2006-2012)

● Distributed
● Asynchronous
● Message passing

concurrency
● Use existing tools/libs
● Fault isolation
● Recoverable failure
● Hundreds of disk images

● Poor page-cache usage
→ spurious reads

● CAS → spurious reads
● Spurious hashing →

spurious reads.
● No locality of data

design → spurious
reads.

Challenges for message-passing
concurrency based forensic processing

● Efficient use of available page-cache.

● Locality of data.

● Storage system & knowledge of active tool-chains.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

